If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-150x-5625=0
a = 3; b = -150; c = -5625;
Δ = b2-4ac
Δ = -1502-4·3·(-5625)
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{90000}=300$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-300}{2*3}=\frac{-150}{6} =-25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+300}{2*3}=\frac{450}{6} =75 $
| 3m+8=7m-20 | | 24=6+3w | | x/20=17/20 | | (5+2w)w=63 | | 0=-16t^2-24t+180 | | 9a-2a+3a=-25 | | 4x+14=13+8x+4 | | (2)2y+6y-12=90 | | 2(2x+7)=13+2(4x+2) | | 2x)+(2x+4)=180 | | (2)2y+6y-12=180 | | z=5/2=4-z/7 | | 18x(2x-1)=6(x+2)+3x | | 4.5x-5.45=5.8 | | w^2-10=10 | | 3(a+5)+19=-2 | | (-3)+9b=96 | | -15t^2+44t-24=0 | | 4-n/2=0 | | 13/5=5/y | | 12/5=5/y | | 3(6x+1)=111 | | 13/5.0416=5/y | | 35=5(n+2$ | | p÷11+(-8)=(-6) | | 10m+(-1)=189 | | x2–4x+8=0 | | -13=(v÷10)-12 | | 12-v÷10=-13 | | -13d-19=-58 | | 59+x+(2x-17)=360 | | 64-12/4*3=x |